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Abstract. A simple procedure with low computational
efforts is proposed to follow the reaction path of the
potential-energy hypersurface (PES) starting from min-
ima or saddle points. The method uses a modification of
the so-called “following the reduced gradient” [Quapp
W, Hirsch M, Imig O, Heidrich D (1998) J Comput
Chem 19:1087]. The original method connects points
where the gradient has a constant direction. In the
present article the procedure is replaced by taking
iterative varying directions of the gradient controlled
by the last tangent of the searched curve. The resulting
minimum energy path is that valley floor gradient
extremal (GE) which belongs to the smallest (absolute)
eigenvalue of the Hessian and, hence, that GE which
usually leads along the streambed of a chemical reaction.
The new method avoids third derivatives of the PES and
obtains the GE of least ascent by second-order calcula-
tions only. Nevertheless, we are able to follow the
streambed GE uphill or downhill. We can connect a
minimum with its saddles if the streambed leads up to a
saddle, or we find a turning point or a bifurcation point.
The effectiveness and the characteristic properties of the
new algorithm are demonstrated by using polynomial
test surfaces, an ab initio PES of H,O, and the analytic
potentials of Lennard-Jones (LJ) clusters. By tracing
the streambeds we located previously identified saddle
points for LIy with N=3, 7, 8, and 55. Saddles for LIy
with N=15, 20, and 30 as presented here are new results.
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1 Introduction

The concept of the minimum energy path (MEP) or
reaction path of a potential-energy surface (PES) is the
usual approach to theoretical kinetics of larger chemical
systems [1-3]. It is able to describe pathways of
conformational rearrangements as well. The reaction
path is defined as the line in the configuration space
which connects the reactant and the product minimum
by passing the saddle point (SP) of the PES. The SP (the
transition structure) and the minima form stationary
points of the PES. The mathematical description of a
MEP turned out to be more difficult than expected [4].
Any algorithm which allows this pathway to be deter-
mined in a suitable approximation should be tested.
Especially the search for valley pathways is an important
part of the PES analysis which still offers no satisfactory
concept. This search is not equivalent to the finding of
steepest descent pathways, which, of course, are simpler
to calculate. The usual “reduced gradient following”
(RGF) curves (see later) can only be used in certain cases
[5, 6]; however, a simple and exact valley-floor charac-
terization of a reaction channel is a prerequisite for a
number of dynamical theories to come into operation,
including the famous reaction path Hamiltonian [2].
Further, the variational transition state theory [3, 7]
needs an exact description of the reaction path [8]. It is
of particular interest that the knowledge of the reaction
pathways may give tools for the interpretation of IR
spectra of vibrationally highly excited molecules [9] and
for the study of mode-selective reactions.

The gradient extremal [10-14] (GE) appeared to
represent a suitable ansatz for a MEP, but, with its
manifold of curves and turning points, this concept in its
general form is not suitable for use as a routine program
for the calculation of reaction paths; for an example of
systematic use see Ref. [15]. The combination of the GE
concept with the RGF [5, 6] presented here provides a
manageable way to follow the streambed of the PES.
The term “‘streambed leading to a minimum” is used to
characterize the reaction path in understandable
two-dimensional model surfaces [17], but it is used
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synonymously in any dimension. Mathematically, we
understand the term streambed as the valley-floor GE of
the PES following the first normal mode to the smallest
(absolute) eigenvalue. This GE leaves the minimum with
the gentlest ascent.

The RGF finds a curve where the selected gradient
direction comes out at every curve point, X =x(7):

VEX@I/[IVEX@Ill =, (1)

where ¢ is the curve parameter and r is the unit vector of
the fixed search direction [6]. The RGF method needs
gradient and (updates of) the Hessian of the PES. There
are curves which pass all stationary points of the PES.
Thus, the RGF is a simple but effective procedure in
order to determine all types of stationary points [5].
Unlike the steepest descent path from a saddle, the
reduced gradient search for a fixed direction locally has
an explicit analytical definition. In other words, the
difference between the two kinds of curves is that the
RGF does not give a curve through every point. We
recall that the RGF curves are not generally MEPs.
Nevertheless, these curves may follow a reaction path in
favorable cases, at least qualitatively.

The idea behind this work is to modify the RGF
method to intrinsically search the MEP. We formally
replace the constant search direction, r, in Eq. (1) of the
RGF method by a variable direction. We take the
tangent of the searched curve itself as new gradient
direction. This may sound like a vicious circle; however,
it is iteratively realizable because the RGF method is
separated into predictor and corrector steps. Every
corrector step is calculated with the tangent direction of
the previous predictor. Quickly, this leads to self-con-
sistency on the valley-floor GE. We term the method
the tangent search correction to the RGF method, or
shorter the tangent search concept (TASC). (The task is
to find the MEP!) Practically, Eq. (1) is realized by a
projector ansatz [6] (see later) and the curve-following
requires the derivation of the ansatz. However, we do
not derive the projector of the “reduced gradient” to
calculate the tangent of the next predictor. With this
trick we avoid the irritating third derivatives of the PES
which occur in the terms of current GE calculations
[13-15]. We have to use nonredundant internal coordi-
nates to avoid problems resulting from the so-called
zero eigenvalues of the translational or rotational mo-
tion of the chemical system (see Refs. [9, 16] for a short
description). Then, usually the smallest absolute eigen-
value of the Hessian belongs to that eigenvector which
describes the streambed direction of the reactive well. A
counterexample is the Don Quixote type SP [18] (a SP
with a large negative and a small positive force con-
stant, as one might use on an emaciated horse (see later
for a discussion). Our TASC is strictly limited to fol-
lowing the direction of the smallest eigenvalue; how-
ever, the new method is very robust and also works in
cases where turning points of the streambed GE appear
(in a region where valleys disappear). Such regions are
overcome by successive corrector steps. With the new
TASC in connection with the RGF we propose a
practicable algorithm for the main part of chemical
reaction pathways.

The article is organized as follows. First, we briefly
repeat the mathematical fundamentals of the RGF
method [5, 6, 9] and define the modified RGF by the
iterative method of the ‘“‘tangent search”. Subsequently,
the success is demonstrated by some examples, including
an ab initio PES of the water molecule. We show with
the help of a test potential the success of the TASC to
overcome turning points of the valley-floor GE. In a
counterexample we show that a SP lying beside the
“lowest” streambed is not accessible by the TASC. (To
find the SP, the TASC has to be combined with
the original RGF.) In a further test, we compute the
isomerization valleys and the corresponding SPs of
Lennard-Jones (LJ) clusters with from three up to 55
particles. In the Appendix we present the scheme of the
algorithm and we prove that the TASC is equivalent to
the GE equation. The method is implemented as a
subroutine in our research code of the GAMESS-UK
program [19], which is available on request.

2 Modification of the RGF by following the tangent
of the previous predictor step: TASC

E(x) is the function of the PES and VE(x) is its gradient
vector, g(x), in the configuration space, R", defined by the
coordinates x of the molecule where, asusual,n = 3N — 6
is the number of independent internal coordinates
forming the dimension of the problem. x and g are
vectors of the dimension n. To realize the requirement
(Eq. 1), the RGF algorithm [6] uses a projection of the
gradient of the PES to fulfill the n — 1 equations

P:gx(1)] =0 . (2)

This results in the (n — 1)-dimensional zero vector of the
reduced gradient. The projector, P,, was chosen here to
be a constant (n — 1) X n matrix: that one which forces
the gradient to point at every curve point, x(#), in the
same direction, r. The tangent to this curve, X'(7), is
obtained by the solution of the following system of
equations:

O (peglx(o)) = p, 20

where H is the Hessian of the PES. The simplicity of the
RGF method is based on the constancy of the P, matrix.
Now, we allow the projector to change after the
predictor step: the tangent direction of the previous
curve point iteratively becomes the search direction for
the next point of the curve. The procedure is named the
TASC. (A computational scheme is given in the
Appendix.) All the calculations of the predictor—correc-
tor method where done using Egs. (2) and (3). In the
derivation of Eq. (3) we further assume a ‘“‘constant”
Py (#) matrix in the current step. This is an approxima-
tion, but it works well and accelerates the calculation
of the streambed line. If necessary, the TASC changes
the corresponding RGF curve after the predictor step.
Figure 1 illustrates the action of the TASC by a
schematic sketch with the test potential

E(x,y) = 2 + 6(xy2 —x +y2) ) (4)
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Fig. 1. Action of the tangent search concept (T74SC) on a model
potential [5]: the points are calculated with fixed predictor steps of
0.4 and a corrector tolerance of 0.001. Curve I is the solution of the
reduced gradient following (RGF) to direction (-1, 3). This is
also the start direction of the TASC. Curves 2 and 3 are the
corresponding RGF solutions to the tangent directions of the
TASC point of the preceding curve. The streambed gradient
extremal (GE) is the x-axis. (There are five predictor steps to the
saddle point, SP.)

To make things visible, the starting point at (1.977, 0.022)
is chosen near the minimum, and the start direction of the
gradient searched is chosen to be (-1, 3). Thus, we selected
the initial direction somewhat skew to the searched MEP
along the x-axis. Additionally, we took a large step length
of 0.4 for the predictor, but a low threshold of 0.001 for
the corrector steps. The first projector is the orthogonal
vector to the first search direction: (0.948, 0.316). It is
applied to the Hessian matrix

11.726  0.270 (5)
0.270 35.726 ) °’

giving the reduced equation 11.210x" + 11.553)’ = 0. The
tangent vector is (—0.718, 0.696); the first predictor step
is (—=0.288, 0.279). Curve 1 is the RGF curve which
follows the start direction. The first predictor step of the
TASC goes along with curve 1; however, corrector steps
do not stop at this curve because of considering the new
direction (-1, 0.97) of the tangent at the starting point.
The next projector is (0.696, 0.718). The corresponding
corrector step is (—0.059, —0.182). It is evident that the
corrector exactly converges to curve 2, which is the RGF
solution to this second direction. Again, at every point of
curve 2, the gradient has this direction (-1, 0.97), but
now the tangent at the TASC point at curve 2 has again
turned to another direction (=1, 0.26), and the next
corrector steps have to search the new curve 3, and so
on. The points calculated by the TASC are the following:

H(1.977,0.022) = (

S (1.977, 0.022),
P (1.690, 0.301),
P (1.241, 0.211),
P (0.824, 0.076),
P (0.421, 0.016),
P (0.021, 0.0003),

1.628, 0.110),

C (1.631, 0.119), C(
C (1.223, 0.056),

C (1.223, 0.059),
C (0.821, 0.014),
C (0.421, 0.0006),

where S is the start, P are predictor steps, and C are
corrector steps.

In general, the resulting curve meets the valley floor
after some steps. This is nearly independent of the cho-
sen initial direction: after a small number of steps, the
method follows the streambed of the valley along the
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direction of the eigenvector with the smallest (absolute)
eigenvalue. In the Appendix, we prove that the GE
equation is actually the background of the TASC, and
the resulting curve is a numeric approximation of the
valley-floor GE. The reason for this nice behavior is
an intrinsic action of the RGF method. This can be
explained using the equivalent differential equation of
Branin [20], which has the same solution curve as the
RGF method [6]. It is

dx

S = X(0) = A glx(1)] (©)
where x’(¢) is the tangent to the solution curve of the
RGF ansatz, and A is the adjoint matrix of the Hessian.
A is defined by AH=det(H)I, with the unit matrix, 1. If
eq,..., e, are the eigenvectors of H with eigenvalues

Als- - -, 4, then they are also the eigenvectors of A but

with  the eigenvalues p; =/A43---4y, ..., and

U, = A1da -+ 2,—1. This is due to the equation

He,~ = )L,-e,- (7)

and by multiplication with the adjoint matrix we get

AH e = det(H)e[ = /I[Aei s (8)

with

det(H) = [ - (9)
k=1

If a point of the solution curve of the RGF method with
the search direction r is reached the gradient of Eq. (6)
points in the same direction. Expressing r by the
eigenvectors

r= Z I e (10)
=1
we obtain the relation for the tangent direction
x’:Ar:Zridet(H)//li e . (11)
=1

If A, is the smallest (absolute) eigenvalue then the e
component of the preceding search direction r is enforced
if in the next step the new direction x’' (Eq. 11) is used in
Egs. (2) and (3). Thus, if the search direction is the
tangent of an RGF curve, this direction is now turned
to the e; direction. The action is larger the larger the
differences of the eigenvalues 1,,..., 4, are against ;. Only
for ry=0 does this action of eigenvector weighting not
work (e.g., if the direction e, is orthogonal to a symmetry
plane where the TASC searches). Equation (11) allows an
effective procedure of eigenvector-following to the small-
est eigenvalue, ;. Using the TASC, the diagonalization
of the Hessian to calculate the eigenvectors is not
necessary. The aspect becomes computationally impor-
tant for very large systems [21]. In contrast to the well-
known method of eigenvector-following [22-24], our
method provides a locally defined curve, found by a
predictor—corrector scheme as used in Ref. [5] for the
RGF method. So we can calculate this pathway as exactly
as necessary, if we diminish the step length of the
predictor and the threshold of the corrector.
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3 Success of the TASC
3.1 Example H>O: GE along the bending mode

The restricted Hartree—Fock method using the 3-21
Gaussian basis set (RHF/3-21G) is applied to follow the
reaction path of dissociation in the water molecule. It is
obvious that the simple quantum chemical level used is
not sufficient to give a globally correct PES of H,O.
Especially, dissociations such as H,O — O + H, can-
not be described adequately without using the complete-
active-space self-consistent-field method or related meth-
ods. It is not the objective of this article to give an exact
description of the high-energy parts of the water PES. In
contrast, the ab initio PES is only used as a model
surface. The pathway of interest starts from the mini-
mum and goes uphill following the eigenvector direction
of the bending mode. The PES analysis is illustrated in
Fig. 2 by using the symmetric surface section [9]. The
axes are the symmetric OH distances (in angstroms) and
the bending angle of the bonds. In the curvilinear
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Fig. 2. Restricted Hartree-Fock/3-21G potential surface of the
water molecule in the symmetric section. The bold lines are the
equipotential lines, the underlying thin lines are the equi-o lines.
GEs should connect those points where both systems of equipo-
tential lines come into contact. The dotted line from the SP at 180°
to the minimum (MIN) and again uphill to the “dissociation
channel” near 30° is the streambed GE found using the TASC

internal coordinates, the scaling of 0.1 Ais equivalent to
an angle of about 5.7°. The curve obtained by the TASC
is depicted by dots. The two pathways uphill starting at
the minimum and the corresponding pathways downhill
(starting at the SP at 180° and the ‘“dissociation
channel” near 30°, respectively) are the same curves.
We may interpret the curves to be numeric reaction path
approximations. They correspond to the valley-floor GE
of the smallest eigenvalue. This may be illustrated by the
o surface of the water molecule shown in Fig. 2 by thin
equi-¢ lines. The measure for the ascent of the PES
functional, E(x), is the norm of the gradient vector
g=(g1,..-.&,). A point showing the gentlest ascent of a
valley is defined by the condition that the norm-quadrat
of the gradient,

o(x) = 5 lgIP (12

forms a minimum taken along an equipotential surface,
E(x) = constant, i.e., along all directions perpendicular
to the gradient, g [10, 11, 25]. In other words, the
projection of Va(x) onto all directions orthogonal to
the gradient vanishes [11]. If g(x) has a minimum then
the PES has the gentlest ascent, and, therefore, we have a
streambed GE, a “GE channel” [17], provided that the
curvature orthogonal to the ascent direction shows the
features of a valley. In Fig. 2 we see that the dotted
curve connects those points where the equilines of both
surfaces (PES and ¢ surface) have the same tangents.
This is the proof that the dotted curve is actually the GE
of the PES. This streambed GE is here qualitatively
comparable with the steepest descent from the SP, the
intrinsic reaction coordinate (IRC).

3.2 Turning points of streambed GEs
and the disappearance of a valley

Turning points can emerge along a streambed GE which
correctly describes the supposed valley-floor path. They
indicate the disappearance of the valley. However, it is
possible that a new valley is formed in the neighbor-
hood. In this case, the GE wanders about the surface
rather than taking the most direct route to the transition
structure. The situation is illustrated by a simple
polynomial test surface. The example [26] of Fig. 3 is

E(x,,2) = a(x® — 1)’ 165> (y — b)*+102
=t D) 4 bl = DP el — D]
x [y —blx+ 1)),

(13)
where a=0.1553, b=0.5, and ¢=-0.7. The z coordinate
may simulate the (n — 2) remaining coordinates of a
molecule; it is only symbolically given by a strong pure
harmonic term. We find in the (x, y) plane at z=0 an
“uphill streambed” starting at the minimum (-1, 0) and
climbing up to the turning point TP; at about (-0.57,
0.06). Here, the valley disappears at the slope of the PES:

this happens at the turning point of the valley-floor GE.
In addition, we also have a “downhill streambed” GE
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Fig. 3. Model potential surface [26], E(x, y, z) = a(x* — 1)2—1—
16y°(y = )’ + 1022 + [y — e(x + )’y + bl — D+ [y +e(x — 1)
[y—b(x+1)% with a MIN and a SP at the z=0 section.
Analytically calculated GEs are shown by bold dashed lines. The
tangent search (TASC, dotted connected curve) explores the two
pieces of the streambed GE between the left minimum and the SP
(curve 1). These parts are disturbed by two turning points. The
turning point region is passed by corrector steps. The same is valid
for the downward search (curve 2)

from the SP at (—0.53, 0.33) downwards to the turning
point TP, at about (-0.67, 0.12). The connection
between the two turning points is also described by the
solution of the GE equation but this is not a valley floor.
Thus, from a chemical standpoint it is not very
interesting to describe this part of the GE curve in
detail. The proposed TASC has the nice feature of self-
correction towards the streambed GE. What happens at
a turning point where the streambed ends? There, the
tangent of the GE is orthogonal to the gradient. But the
TASC searches a curve where the gradient points into
the tangent direction of the previous RGF curve. Thus,
the TASC cannot find the exact location of the turning
point of the GE. (If the step length is decreased, the
TASC may come nearer to this TP.) If the algorithm
reaches the turning-point region, say TP; uphill, it
“realizes”, after an overshooting iteration step, the end
of the TASC path. This depends on the chosen accuracy
condition of the RGF equation, simply because the
corrector does not converge to a curve point, owing to
the absence of a further solution of the TASC behind the
turning point. However, the corrector continues to work
having in store the tangent of the last “‘unsuccessful”
predictor step (we control the step length — this is
necessary in contrast to the RGF) and ““curve” 1 usually
passes the region between the two turning points: After a
more or less longer pathway it converges to the next
streambed represented by the GE curve. This is the part
between TP, and the SP, and the predictor leads the
curve along the GE up to the SP. The path after a TP
searched by pure corrector steps may be monitored by a
simple count of the corrector steps.

Vice versa, starting in Fig. 3 at the SP and going
downwards, the algorithm leads the curve along the GE
down to TP,, and there it again realizes the disappear-
ance of the valley. The corrector searches further along
“curve” 2, and at least it will converge to the lower
valley-floor GE, finally finding the minimum. Note that
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the other eigenvalues (absolute) are throughout larger
than the eigenvalue of the streambed GE. We under-
stand the two parts between the minimum and TP, or
between the SP and TP,, as reaction pathways. How-
ever, the region between TP, and TP, is an “unstable”
part. It is characterized by the change from the termi-
nating valley to another one in the neighborhood. Along
this part the GE curve reduces the energy in comparison
to the former part (this is the characterization of a
turning point of a GE). The hysteresis of curves 1 (up-
hill) and 2 (downhill) disturbs the unique definition of
the reaction pathway, and, of course, also the applica-
bility of theories which are based on the reaction path
definition. This is due to the shape of the PES. It is an
intrinsic problem and cannot be solved by mathematical
tricks. Also the lines of steepest descent from the SP flow
asymptotically into the valley floor of the lower “reac-
tion path” which starts from the minimum. It is im-
possible to determine the “point of confluence” of the
two lines by a local criterion [4]. Note, turning points are
frequent already on the PES of the simple four-atom
molecule formaldehyde, H,CO [27].

The behavior of the TASC at the ‘“‘side-on”-type
turning points described with the help of Fig. 3 is typical
for most turning point situations which we met in our
tests; however, there are also tests where the search,
using corrector steps, finds a ridge GE without crossing
the SP. If this happens, we go down the ridge and find
the SP as well.

3.3 The bifurcation of a streambed GE

The so-called Don Quixote SP [18] has a decomposition
mode larger in its absolute value than at least one of the
residual ridge modes. An example is shown in Fig. 4
modeling a unimolecular reaction step

E(x,,2)=x*(80—%)” /80+0.2x* +:0.1)2 (200—37) + 10022,
(14)

where the section z=0 is drawn. (The z coordinate may
simulate the (n — 2) remaining coordinates of a mole-
cule; it is only symbolically given by a strong pure
harmonic term.) The potential partly imitates the
rotation and inversion processes of CH,NO; treated in
Ref. [28]. The PES (Eq. 14) has one minimum at (0, 0, 0)
and two SPs at (0, £ 10, 0). To avoid the pure
symmetric pathway, we started the TASC at (0.01, 0.1,
0.0) near the minimum in the positive y direction along
curve 1, which is the eigenvector and gradient direction
of the ““uphill streambed”” GE to the smallest (absolute)
eigenvalue. The TASC jumps over the GE bifurcation
point [29] at y=5.2 and also over the inflection point of
the corresponding energy profile at y=15.8 (not visible in
the figure). At the y-axis, the second eigenvector points
in the x direction controlled by symmetry. At y=7.2
the region of the Don Quixote SP begins where the
eigenvalue of the x direction becomes smaller than
the absolute value of the negative eigenvalue along the y-
axis GE. The streambed GE along the y-axis (curve 1
and a part of curve 2 both calculable using the TASC)
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“ends” at y =~ 7.1. The predictor becomes unstable and
after two steps, the corrector breaks out. The procedure
finds the new streambed, GE3, as one of two GE side
branches. This GE3 goes uphill to infinity. Thus, in such
a particular case, the tangent search method cannot find
the SP on the y-axis because this SP is not connected
with the minimum by a usual streambed. In contrast, the
branches of the bifurcated reaction path, GE3, have
lower slopes than the further GE following the y-axis
(GE2). The region of GE2 after the breakout of the
TASC is a cirque. The bifurcation point [14, 29] of the y-
axis GE at 5.2 does not disturb the TASC because the
TASC depends only on the eigenvalues of the Hessian,
but the GE bifurcation is additionally influenced by the
values of the gradient and the third derivatives of the
potential. (The example shows that the bifurcation of
a GE generally does not take place at the crossing point
of the eigenvalues. This contrasts with a remark in
Ref. [17].)

When looking at the whole PES the y-axis GE (1 and
2 in Fig. 4) is shown to be the pathway connecting the
global minimum and the SP. Of course, this is exactly
the steepest descent from the SP, the IRC. It coincides
with the y-axis GE; however, the IRC only works
downhill. How can a global working procedure be de-
fined? There are two strategies. The first would mean to
follow only the streambed, i.e., the TASC. As shown in
Fig. 4A, the bifurcation of the y-axis GE (calculable
with the GE theory [29]) leads to two branches of weaker

0 6 length of 0.15 and a corrector

tolerance of 0.00005. The cor-
rector step length is that of a
Newton—Raphson step which is
restricted to the predictor step
length if necessary. The TASC
starts at the MIN but does not
directly meet the Don Quixote
SP along the y-axis because this
SP is not situated on top of the
streambed. B The SP is available
using a combination of the
TASC with the original RGF
method which is switched on at
the crossing of the eigenvalues
along pathway 2, see text. C
View over the surface

slope. By definition, these branches are the streambeds;
however, these streambed GEs avoid the SP on the y-
axis. The second strategy is also to follow the streambed
uphill to its end as in Fig. 4A, but in addition to try to
find a possible SP in the previous streambed direction
after the eigenvalue-crossing. This cannot be done by the
TASC. We simply use a link to the original RGF. Be-
cause the second (positive) eigenvalue, 1,, becomes lower
than |4;| after the crossing, the shape of the PES can be
compared with a broad “waterfall”, but it does not fulfill
the definition of a streambed, where flows from the left-
hand side and from the right-hand side would be con-
fluent. The valley along the y-axis GE through the SP in
the direction of the decomposition mode still continues
to be a valley, but a special kind of it, a so-called cirque.
Steepest descent lines in this region do not flow into each
other in a “‘singular steepest descent” line [17], which
may be the usual line of the MEP concept. Steepest
descent lines starting in the neighborhood of the Don
Quixote SP go downhill in a nearly parallel manner.
Thus, the method used should not be enforced to find
exactly one defined MEP. At the “breakout point” of
the TASC, it is sufficient to go further uphill to the Don
Quixote SP using the original RGF method following
any (fixed) gradient direction of the “waterfall”. This is
demonstrated in Fig. 4B. The pathway uphill from the
minimum to the end of the streambed is given by the
TASC. However, at 0.94, < |4;] the procedure jumps to
the RGF under the fixed search direction of the gradient



of the last TASC step. Note that the deviation is not
visible in Fig. 4B. The maximal deviation from the
pathway of curve 2 is reached at (0.031, 8.947). After
this point the RGF procedure converges quickly back to
the saddle point at (0,10).

3.4 Examples: search for SPs of LJ clusters
along their streambed GE

The potential of the proposed method is best appreci-
ated when it is applied to systems with an analytic
potential which is computationally inexpensive to eval-
uate. Argon clusters provide excellent examples of such
systems where the intracluster interactions are well
described by simple pairwise additive terms. We use
the LJ potential [30] for the 3N-dimensional cluster of N
argon atoms. The energy of the LJy cluster is given by
the pairwise additive function

a-ay 3 () (2)]

where ¢ is the pair potential well depth, ¢ =0.3405 nm is
the separation appropriate for argon where the pair
interaction goes through zero, and ry; is the separation of
atoms i and j. The energy is given in LJ reduced units:
¢=1.671 x 107"* erg. A Fortran program for the LJ
potential developed by D.J. Wales is used.

We will confirm on the LJ clusters that the “uphill
streambed” GE does not necessarily lead to the next SP
(see Sect. 3.3 and earlier work [4]). Our search for a
“streambed”” SP of an isomerization path of LJ  starts at
minima which have been well cataloged in the Cambridge
Cluster Database [31]. We reduce the 3N Cartesian co-
ordinates to n=(3N — 6) internal coordinates referring
to the z-matrix output of the program MOLDEN [32].
(N — 1) distances, (N — 2) angles, and (N — 3) dihedrals
are used. The start direction of the TASC is the eigen-
vector to the smallest eigenvalue (or any approximation),
where both signs of the direction are probed. We found
the SPs given in Table 1. Every SP was refined by a
Newton—Raphson run and, additionally, a steepest de-
scent test was done to check its connection to the initial
minimum. Because we are interested in the streambed
GEs, the step length of the predictor used by the TASC in
the first run is kept small. The number of predictor and
corrector steps given in Table 1 is obtained from tests for
fixed maximal step lengths, for which the algorithm still
works. For example, to get the result for LJ,, in Table 1,
eight predictor steps and 17 corrector steps are necessary
using the predictor step length of 0.5 and a corrector
threshold of 0.1. We need 34 predictor steps and 23
corrector steps for the step length 0.2 for the predictor
and the corrector threshold of 0.01. If the step length is
reduced to 0.07, we have 95 predictor steps but only 17
corrector steps to reach the SP. (A too large step length
may result in a distant starting point for the corrector
which may diverge, or the steps for internal coordinates
are too large and/or the z-matrix does not work.) Note
that the TASC program used is still a development ver-
sion; no attempt was made at performance optimization.
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To somehow illustrate the higher-dimensional cases
of an LJ cluster, we give a picture of the simple three-
atomic, three-dimensional case [33] of LJ; in Fig. 5. The
Cartesian plane of the pathway of the third argon atom
is shown when moving around the first two argon atoms
which are fixed on the x-axis. The TASC pathway climbs
up along the very flat valley-floor GE, but the surface
along orthogonal directions to the pathway of LJ; shows
very strong curvatures. The contrast of the curvatures is
a general feature of the LJ potential.

The SPs found using the TASC for LJ; and LJg agree
with the structures given in Refs. [15, 34, 35]. These SPs
are points on top of the streambeds which connect the
SP and the minimum from which the search was started.
As expected, we are able to find the corresponding ““floor
lines” of isomerization paths of these clusters.

For LJ;5, we can find a much lower SP (Table 2) than
the SP found as a putative lowest SP in Ref. [35]. The
reason may be due to particularities of the PES around
the SP. The pathway over the SP is extremely flat
along the decomposition mode, but the curvature of
most of the orthogonal directions is large. It forms a SP
with cross-sections of extreme curvature. Such a very
narrow defile in the energy mountains will represent a
small reactive volume in the configuration space, and it
may be difficult to find the pathway using the stochastic
algorithms used in Ref. [35]. However, this SP of LJ;5 is
not found by using the TASC alone. Up to —50.6 ¢ the
valley profile uphill shows a large negative curvature like
a stair, followed by the terraced SP region. The TASC
search breaks out as in Fig. 4A. It does not find the SP
region and it climbs further uphill by a large number of
corrector steps. However, as in Fig. 4B, the SP is finally
reached by the combination with the RGF method,
which we switch on if the eigenvalue 0.9 A, is lower than
|A1]. The search direction of the RGF is fixed to the last
ascent direction before the crossing.

The low SP found in the LJ,, cluster is also of some
interest (Table 3). Again, the SP is not found by the
pure TASC going up the streambed. At —75.12 ¢ the
first two eigenvalues cross. || becomes greater than 4.
Using corrector steps, after the crossing the TASC goes
around the SP and finds a ridge GE. Turning down the
search there, we find the desired SP along this detour.
Thus, the resulting pathway is not a GE to the smallest
eigenvalue throughout. Using the second strategy, on
the other hand, the TASC is switched onto the RGF
method at the eigenvalue crossing as in Fig. 4B. The
result is a cirque GE. Additionally, the second eigen-
value becomes negative at —74.91 ¢; thus, a valley-ridge
inflection point [6, 9] is met. The RGF method over-
comes this difficulty by following a bluff and then
finding the SP. (The finding of valley-ridge inflection
points of the PES [6, 9] is out of range of the tangent
search method because there the “‘second” eigenvalue
moves through zero, by definition; thus, it is smaller
than the eigenvalue in the path direction.)

The decomposition modes of the SPs of some other
clusters are also very small. For N > 13, the ratio |4;]:4,
is of the order of 1:200. Some SPs are extreme ‘““Sancho
Panza” type SPs [18] (flat saddle passage, narrow valley
like a short, fat donkey). LJ,o and LJs5 are exceptions, as
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Table 1. Ary cluster energies (in ¢ units) for global minima and the
saddle points which are connected by the tangent search concept
(TASC) or by TASC and the reduced gradient following, with fixed
predictor step length; and the first, second, and last eigenvalue at

the saddle points (SP). Last row: number of predictor and corrector
steps (P + C). N is the cluster size and » is the dimension of the
configuration space

N n E(Min) E(SP) EV, EV, EV, P+C

3 3 ~3.000 ~2.031% ~0.0198 5.038 15.245 243

7 15 ~16.505 ~15.4447 ~0.8654 2.728 21.003 8 + 12
8 18 ~19.821 ~18.806" (~19.281") ~0.8198 1.428 24.553 11+ 10
15 39 -52.322 ~50.528 (—50.239° —48.798¢%) ~0.2279 0.4580 48.502 14 + 23
20 54 ~77.177 ~74.991 ~0.5429 0.5928 69.230 8 + 17
30 84 ~128.286 ~125.595 ~0.4803 0.1639 83.395 21 + 28
55 159 ~279.248 ~270.616" (-276.239°) ~0.3582 0.9490 72.278 15 + 31

#The SP is arrived at using the TASC; thus, it is on top of a valley gradient extremal

®There is a lower-energy SP of first order [34] which is inaccessible by a streambed gradient extremal from the global minimum
A higher-energy SP of first order reached in this work by a jump between two streambed gradient extremal, as in Fig. 4

9 There is a much higher SP of first order [35] which is inaccessible using a streambed gradient extremal from the global minimum
¢ A number of lower-energy SPs of first order [34, 39] are inaccessible using a streambed GE from the global minimum

0 2 4 6 8

Fig. 5. Lennard-Jones potential of Ars. The Cartesian plane shows
the movement of the third Ar atom around the first two Ar atoms
which are fixed at zero and at the x-axis. The equilibrium structure
is the equilateral triangle and the SP is a linear structure on the x-
axis. The TASC pathway (dotted curve) climbs up along the valley-
floor GE using a fixed predictor step length of 0.0725 and a
corrector tolerance of 0.0025

Table 2. Geometry of the lowest SP at —50.528¢ for the system of
the Ar;s cluster

Atom X y z
1 —0.04836158 0.01647163 —-0.06104223
2 —0.04836158 0.01647163 3.73082246
3 3.60173663 0.01647166 —0.38034045
4 1.74049195 3.42338288 —-0.87607992
5 0.67786044 —-3.15920862 1.70025666
6 —2.14270393 —-3.26090370 —0.75417290
7 —-1.63119227 2.73733305 —2.22527963
8 2.51979433 2.32677921 2.50659959
9 3.50802030 —-1.23196075 3.17422691
10 1.39404502 —2.71923000 —2.06340965
11 1.55010075 0.79716210 —3.47927384
12 —1.25743824 3.01150870 1.60976057
13 —-2.91083623 —1.98424934 2.62349887
14 —1.79466583 —0.79329827 —3.43488469
15 —-3.70764219 0.30912110 —0.23941487

Table 3. Geometry of the lowest saddle point at —74.991¢ for the
system of the Ar, cluster

Atom X y z

1 0.4586277119 1.7563789205 0.1662820679
2 0.4586277119 1.7563789205 3.7650045973
3 3.8527506190 1.7563789205 1.6380240637
4 1.8492530016 4.9482412859 1.3367993440
5 —-0.2392746122 4.7197919716 —1.9431628950
6 2.9671610982 —0.5594993359 —1.3430095533
7 —-0.5065121994 —-1.6168138191 —0.2812529827
8 2.0861704149 —1.4783390886 2.2545212094
9 —1.1821699055 —1.7433867937 4.0474010268
10 —2.7467658067 0.6428282338 1.7957924784
11 —2.9245108676 —-1.4709518059 —2.9774908085
12 0.6978557504 -2.6218315614 —3.6986210691
13 —0.4000866318 —4.6670039459 1.9439079944
14 —2.8878274128 2.0574036788 —1.5840744608
15 2.2290293989 —4.1663325028 —0.6206086564
16 —-1.8760808119 4.2727638451 1.5183921321
17 -3.6795311179 —2.9331394592 0.9358728746
18 0.2022972739 1.0554040646 —3.4094421217
19 3.1957007644 3.1686503774 —1.8830023717
20 —1.5547143792 —4.8769219064 —-1.6613328696

can be seen from the first two eigenvalues. The eigen-
values of the decomposition mode, the weakest as well
as the strongest mode, 4,, of the cluster treated, are
reported in Table 1. It appears that the LJ potential of
Eq. (15) seems to be an extreme energy hypersurface,
making these systems excellent test cases for the pro-
posed method.

The SP structure found for LJ3q is given in Table 4.
The SP has the type described in Sect. 3.3: the first two
eigenvalues form the characteristic of a Don Quixote SP.
It is not available through following the TASC, but
through the mixed strategy described earlier. It is pre-
sumed (cf. Fig. 4B) that this leads to the next SP if it
exists at all. For the SP of LJ,, the algorithm changes
twice between the TASC and the RGF. At —126.5 ¢ and
—125.6 ¢, it jumps from following the tangent search to
the RGF, but in-between, after going down with cor-
rector steps, it comes back to the TASC at —126.7 ¢. In



Table 4. Geometry of the SP at —125.595¢ for

Ars cluster

the system of the

Atom x y z
1 —2.0970363983 —0.7892923341 —4.6033067148
2 —2.0970363983 —0.7892923341 —-0.9286209663
3 1.5360422712 —0.7892923341 —5.0534884628
4 4.8937241689 —0.5521820671 —3.5949563424
5 4.3201561746 0.8635847015 —0.18543006611
6 3.2525083734 —2.1040052411 2.1264239994
7 —0.4045022381 —2.9818556065 1.5149700938
8 —-0.6783333182 —3.8358914622 —2.6322292430
9 —4.3325876349 —2.7167590444 1.3456800682
10 —5.0530223459 1.1161904345 0.3806790499
11 —1.7365545942 3.0542231207 0.3986852480
12 —3.2180138859 2.3517496086 —2.9084270245
13 —0.2959670303 4.9832492483 —2.6401262228
14 0.3537063498 1.4274138920 —2.2947327017
15 1.9947213713 3.8556851445 0.2353911439
16 —0.1294564902 2.8986630501 3.8211363867
17 0.6740067143 —-0.8167927164 4.6206577463
18 —2.6019550049 —2.8174658000 4.7718392368
19 —2.3130972529 0.0940615627 2.5991108709
20 —3.9910448902 3.2171720076 3.4883271434
21 —5.6020126603 —0.2849799133 4.0813685412
22 —2.4634188091 0.8386338999 6.1625267502
23 —0.3982471958 2.5341627977 —5.6670273023
24 3.4229760729 2.9796997987 —3.3248753969
25 3.4778416398 1.6216839205 3.4506279780
26 0.8740745632 0.5240233418 1.1661391534
27 3.1289100139 —4.0860988997 —3.8591505775
28 1.9401169315 —-1.6683975067 —1.4174650752
29 2.1914604745 —5.1151829656 —0.2231704596
30 5.3520410283 —-3.0127083037 —0.8305562593

this manner, the SP region is reached but the SP again is
only available using the RGF.

N =155 is a magic number for an Ary cluster, because
its global minimum structure represents the closure of
the second shell of atoms in an icosahedral packing
geometry [36]. For this, the largest cluster treated in
this work simulated by LJss, we found the SP at
—270.60¢ using the TASC, which lies very high in the
mountains of the PES [23, 24, 34, 37]. We obtained it
on top of a streambed GE using the TASC. The cluster
has a so-called sawtooth potential [38]. Additionally, it
is known that LJss has a number of further low-lying
SPs which connect minima but do not include the
global one [23]. It becomes clear from the correspond-
ing disconnectivity graph [39] that these SPs of first
order should be inaccessible using the streambed GE
from the global minimum, however, other SPs as well
[40, 41], which are connected to the global minimum,
forming the sawteeth of the main bowl of the PES are
not reached by the tangent search uphill. They belong
to normal-mode directions of larger eigenvalues of the
minimum. Thus, they are located at the side slopes of
the streambed GE.

4 Conclusion

We demonstrated the workability of the new algorithm,
TASC, for following the streambed GE as exactly as we
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need it, including the SP of first order lying on the top of
the streambed GE. We started at a given minimum in the
direction of the “smallest” eigenvector, but we did not
use any further external knowledge to continue, like
many salmon swimming upstream. (Alternatively, we
may also start at a SP and go down. In the case of a
continual streambed this leads to the same line!) We only
need the evaluation of the gradient and the Hessian per
step. Examples are an ab initio model potential for H,O
as well as an LJ custer containing up to 55 atoms. The
TASC is a modified RGF method comparable in its
effort with the RGF method [5, 6, 9]. Only the projector
matrix, Py (1> NOW has to be recalculated for Eq. (2) after
every predictor step. The additional numeric effort is
next to nothing. The new procedure is a potent method
for studying the streambeds of multidimensional surfac-
es. Its success is based on the numerical tracing of
the MEP, which we mathematically understand as the
valley-floor GE. This success results from the self-
correction of the modified RGF method: The tangents
of the RGF solutions to different directions are ‘“‘con-
tractive” in the sense that they are always a “better”
guess than a constant RGF direction to search for the
streambed line. The original RGF [5, 6] already forms an
effective tool to find SPs where the choice of the search
direction is quite arbitrary; however, the RGF can
diverge more or less from the MEP even if it starts in the
eigenvector direction. The choice of the actual tangent in
the TASC now overcomes (and restricts) the arbitrari-
ness of the choice of direction used in the RGF method.
The solution of the TASC is, after some initial iterations,
uniquely defined by the PES, actually a numeric
approximation of the valley-floor gradient extremal.
However, this is also its “fault”: its special mathematical
working mechanism restricts the TASC to only GE
pathways where the valley direction represents the
smallest (absolute) eigenvalue. The overwhelming com-
plexity of all possible GEs (Fig. 4A) is automatically
ruled out by the TASC to the one valley-floor GE, which
is that GE which is frequently of primary chemical
interest. For instance, the method should be suitable to
follow proton (or substituent) migrations in protonated
systems, for example, in protonated olefins and aromatic
compounds, cf., for instance, the proton motion in
protonated benzenes and ethylenes [42]. Researchers
often wish to find the streambed in the conformational
space of dihedral angles which represent the weakest
modes in a molecule [43]. For example, in the currently
discussed folding—unfolding problem of proteins, it
is assumed that weak dihedral variables are mainly
involved [44].

The special SP-type of so-called Don Quixote char-
acteristics is not situated on the top of a streambed. It is
not attainable using the TASC alone but by combination
with the RGF method. So some very flat SP defiles of an
LJ cluster lying in extremely narrow valleys are quickly
found. Further, bifurcation points of the streambed GE
are not necessarily indicated by the TASC, but the
crossing of the absolute values of the first two eigen-
values disturbs the search and forces the corrector to
search (by controlled step length) for another streambed
GE in the “neighborhood”. Again it appears that the



154

limitation of the TASC can be overcome by the combi-
nation with the original RGF method.
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Appendix
1 Scheme of the TASC algorithm

1. Initialisation, preparing and execution of first step along given
direction.

> Transform internal to Cartesian coordinates.
Calculate energy, gradient, and Hessian matrix.
Mass weighting.
Calculate metric tensor, g, and coordinate transformation, B.
Transform gradient and Hessian into internal coordinates [16].
Vibrational analysis [9].
Calculate Newton—Raphson step for STOP criterion 6.
Project gradient and Hessian by tangent projector of last
predictor.
Calculate new tangent by QR decomposition.
3 Test of tolerance
Predictor Corrector
Calculate step Solve Eq. (2) by steps
length [45]. orthogonal to search direction [46].
Calculate step
along new tangent.
4.

Optional: test of smallest eigenvalues, 4;
Continue TASC (up or down) by  Jump to RGF [5, 6]:
last tangent: = =+ (new tangent). hold search direction.

5. Store actual values, and execute the step.
6. Repeat steps 2-5 until STOP criterion is satisfied: the stationary
point is found.

2 Proof that the TASC yields a gradient extremal

For simplicity, we only treat the two-dimensional case. Instead of
the RGF we may use the equivalent Branin method, Eq. (6). There
is the tangent, x’, of a solution of the RGF, as well. The projector
of the original RGF was P, to the search direction, r. We replace
this constant direction after every predictor step by the direction of
the tangent, x’. Thus, the projector for the next step must be con-
structed with the vector Ag. If the Hessian is

hiy hip
H= , Al
<h12 hzz) (A1)
then
hy  —hp
A= A2
<_h12 hiy ) (A2)
because
_ ik =3, 0 _
HA = ( . s i, ) = LT (A3)
Now
_ hag, — hlzgy
Ag = (*hlzgx +hng, (A4)

and

Pug = (Ag) = (hiag, — h11g, hng, — hing,) (A3)
If we search for a solution curve of Eq. (2) this becomes
Pyg=0 . (A6)
We get

iz (gf - g}z) + (h — hn)g.g, =0, (A7)

which is the equation of the gradient extremal [11].
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